Transcriptional regulation of human protease-activated receptor 1: a role for the early growth response-1 protein in prostate cancer.

نویسندگان

  • Zaidoun Salah
  • Myriam Maoz
  • Gallina Pizov
  • Rachel Bar-Shavit
چکیده

Transcriptional regulation plays a central role in the molecular pathways underlying preferential cancer growth and metastasis. In the present study, we investigated the regulation of human protease-activated receptor 1 (hPar1) gene overexpression in the malignant androgen hormone-resistant phase. We found increased hPar1 RNA chain elongation and no change in message stability in cells with high levels of PAR1 expression, indicating that increased transcription is largely responsible for the overexpression of hPar1 in prostate tumor progression. Enforced expression of early growth response-1 (Egr-1) plasmid markedly enhanced luciferase activity driven by the hPar1 promoter. The neuroendocrine peptide bombesin significantly induced hPar1 expression and increased the ability of the cells to invade Matrigel, an effect abolished by expression of hPar1 small interfering RNA, showing the importance of hPAR1 in invasion. Bombesin also markedly enhanced Egr-1 binding to the hPar1 promoter in vivo and in vitro. These data suggest that bombesin enhances Egr-1 expression leading to increased hPar1 transcription, thereby increasing PAR1 expression and function. Immunohistostaining of prostate tissue biopsy specimens revealed a direct correlation between the degree of prostate cancer malignancy, PAR1 expression, and EGR-1 expression. Altogether, we show that transcriptional regulation of hPar1 in the aggressive hormone-resistant prostate cancer stage is controlled in part by the transcription factor Egr-1 and may play a central role in invasiveness, an important indicator of malignancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

IFI16 in human prostate cancer.

Increased expression of IFI16 protein (encoded by the IFI16 gene) in normal human prostate epithelial cells is associated with cellular senescence-associated cell growth arrest. Consistent with a role for IFI16 protein in cellular senescence, the expression of IFI16 protein is either very low or not detectable in human prostate cancer cell lines. We now report that treatment of DU-145 and LNCaP...

متن کامل

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

Pre-Clinical and Clinical Data Confirm the Anticancer Effect of Deuterium Depletion

The two stable isotopes of hydrogen, protium (1H) and deuterium (2H) differ in their physicochemical nature. Deuterium-depleted water (DDW) significantly inhibited the growth rate of different tumor cell lines in culture media and xenotransplanted MDA-MB-231, MCF-7 human breast adenocarcinomas and PC-3 human prostate tumors in vivo. The apoptosis-triggering effect of DDW was demonstrat...

متن کامل

Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer.

Mitogen-activated protein (MAP) kinases phosphorylate the estrogen receptor and activate transcription from estrogen receptor-regulated genes. Here we examine potential interactions between the MAP kinase cascade and androgen receptor-mediated gene regulation. Specifically, we have studied the biological effects of mitogen-activated protein kinase kinase kinase 1 (MEKK1) expression in prostate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 20  شماره 

صفحات  -

تاریخ انتشار 2007